Thông tin chung

ThS.N.H.Can

 Nguyễn Hữu Cần

 Tiến sĩ 2024

 Nghiên cứu viên, Giảng viên

 E-mail: nguyenhuucan@tdtu.edu.vn

 

A. Quá trình đào tạo và hoạt động khoa học

1. Quá trình đào tạo

* 2024: Tiến sĩ ngành Toán giải tích, Trường Đại học KHTN, ĐHQG TP. HCM

* 2016: Thạc sĩ ngành Toán giải tích, Trường Đại học Cần Thơ

* 2014: Cử nhân ngành Sư phạm Toán học, Trường Đại học Cần Thơ

2. Quá trình hoạt động chuyên môn

* 2017 – nay: Nghiên cứu viên, Khoa Toán - Thống kê, Trường Đại học Tôn Đức Thắng

3. Lĩnh vực nghiên cứu

* Phương trình đạo hàm riêng

* Giải tích cấp không nguyên

* Bài toán giá trị cuối

* Bài toán chỉnh, bài toán không chỉnh

* Giải tích số

* Mô hình toán học, phương pháp số, mô phỏng số

4. Hội nghị

* 11/2022: Hội nghị Khoa học lần thứ 13, Trường ĐH KHTN, ĐHQG HCM

* 12/2020: Hội nghị Khoa học lần thứ 12, Trường ĐH KHTN, ĐHQG HCM

* 08/2019: Hội nghị Toán học Miền Trung - Tây Nguyên lần thứ 3, Trường Đại học Tây Nguyên

* 12/2018: Hội nghị Toán học quốc tế, Trường Đại học Tôn Đức Thắng

* 11/2018: Hội nghị Khoa học lần thứ 11, Trường ĐH KHTN, ĐHQG HCM

* 08/2018: Hội nghị Toàn học toàn quốc, Trường Đại học Thông tin Liên lạc, Nha Trang

* 12/2017: Hội nghị Toán học Miền Trung - Tây Nguyên lần thứ 2, Trường Đại học Đà Lạt

B. Công bố khoa học

  1. Can, N. H., Tri, V. V., Minh, V. N., & Tuan, N. H. (2024). Well-posedness and regularization for Caputo fractional elliptic equation with nonlocal condition. Evolution Equations and Control Theory, 13(2), 560-586. DOI: https://doi.org/10.3934/eect.2023058
  2. Duy Binh, H., Dinh Huy, N., Tuan Nguyen, A., & Huu Can, N. (2024). On nonlinear Sobolev equation with the Caputo fractional operator and exponential nonlinearity. Mathematical Methods in the Applied Sciences, 47(3), 1492-1513. DOI: https://doi.org/10.1002/mma.9624
  3. Tuan, N. H., Nguyen, A. T., & Can, N. H. Existence and continuity results for Kirchhoff parabolic equation with Caputo-Fabrizio operator. Chaos, Solitons & Fractals, (2023) 167, 113028. DOI: https://doi.org/10.1016/j.chaos.2022.113028
  4. Wang, R., Can, N. H., Nguyen, A. T., Tuan, N. H. Local and global existence of solutions to a time-fractional wave equation with an exponential growth. Communications in Nonlinear Science and Numerical Simulation, 118, 107050. (2023). DOI: https://doi.org/10.1016/j.cnsns.2022.107050
  5. Tuan, N. H., Hai, N. M., Thach, T. N., Can, N. H. On stochastic elliptic equations driven by Wiener process with non-local condition. Discrete and Continuous Dynamical Systems-S, (2022). DOI: https://doi.org/10.3934/dcdss.2022187
  6. HD Binh, D Kumar, NH Luc, NH Can, Stability of fractional order of time nonlinear fractional diffusion equation with Riemann-Liouville derivative, Mathematical Methods in the Applied Sciences, 26 pp (2022). DOI: https://doi.org/10.1002/mma.8166
  7. NH Can, NH Tuan, D O'Regan, VV Au, On a final value problem for a class of nonlinear hyperbolic equations with damping term, Evolution Equations & Control Theory, 10:1, 103-127 (2021). DOI: https://doi.org/10.3934/eect.2020053
  8. VV Au, D Baleanu, Y Zhou, NH Can, On a problem for nonlinear diffusion equation with conformable time derivative, Applicable Analysis, 22 pp (2021). DOI: https://doi.org/10.1080/00036811.2021.1921155
  9. NH Tuan, NH Can, R Wang, Y Zhou, Initial value problem for fractional volterra integro-differential equations with caputo derivative, Discrete Contin. Dyn. Syst. Ser. B, 28 pp (2021). DOI: https://doi.org/10.3934/dcdsb.2021030
  10. TN Thach, NH Can, VV Tri, Identifying the initial state for a parabolic diffusion from their time averages with fractional derivative, Mathematical Methods in the Applied Sciences, 16 pp (2021). DOI: https://doi.org/10.1002/mma.7179
  11. NH Can, D Kumar, VV Tri, NA Tuan, On time fractional pseudo-parabolic equations with nonlocal integral conditions, Mathematical Methods in the Applied Sciences, 19 pp (2021). DOI: https://doi.org/10.1002/mma.7196
  12. E Karapinar, HD Binh, NL Luc, NH Can, On continuity of the fractional derivative of the time-fractional semilinear pseudo-parabolic systems, Advances in Difference Equations, 70, 26 pp (2021). DOI: https://doi.org/10.1186/s13662-021-03232-z
  13. NH Luc, S Tatar, D Baleanu, NH Can, An inverse source problem for pseudo-parabolic equation with Caputo derivative, Journal of Applied Mathematics and Computing, 27 pp (2021). DOI: https://doi.org/10.1007/s12190-021-01546-5
  14. NH Luc, LD Long, LTD Hang, D Baleanu, NH Can, Identifying the initial condition for space-fractional sobolev equation, Journal of Applied Analysis & Computation, 20 pp (2021). DOI: https://doi.org/10.11948/20200404
  15. TB Ngoc, VV Tri, Z Hammouch, NH Can, Stability of a class of problems for time-space fractional pseudo-parabolic equation with datum measured at terminal time, Applied Numerical Mathematics, 167, 308-329 (2021). DOI: https://doi.org/10.1016/j.apnum.2021.05.009
  16. DHQ Nam, J Singh, NH Can, The local well-posed results of Kirchhoff parabolic equation with nonlocal condition, Journal of Interdisciplinary Mathematics, 11 pp (2021). DOI: https://doi.org/10.1080/09720502.2021.2006318
  17. NH Can, LD Long, HD Binh, NH Luc, Biharmonic heat equation with gradient nonlinearity on $L^p$ space, Thermal Science, 6 pp (2021). DOI: https://doi.org/10.2298/TSCI21S2359C
  18. NH Tuan, Y Zhou, TN Thach, NH Can, An approximate solution for a nonlinear biharmonic equation with discrete random data, Journal of Computational and Applied Mathematics, 371, 112711, 19 pp (2020). DOI: https://doi.org/10.1016/j.cam.2020.112711
  19. NH Tuan, D Baleanu, TN Thach, D O'Regan, NH Can, Approximate solution for a 2-D fractional differential equation with discrete random noise, Chaos, Solitons & Fractals, 133, 109650, 13 pp (2020). DOI: https://doi.org/10.1016/j.chaos.2020.109650
  20. VV Au, Y Zhou, NH Can, NH Tuan, Regularization of a terminal value nonlinear diffusion equation with conformable time derivative, Journal of Integral Equations and Applications, 32:4, 397-416 (2020). DOI: https://doi.org/10.1216/jie.2020.32.397
  21. TT Binh, NH Can, DHQ Nam, TN Thach, Regularization of a two-dimensional strongly damped wave equation with statistical discrete data, Mathematical Methods in the Applied Sciences, 43:7, 4317-4335 (2020). DOI: https://doi.org/10.1002/mma.6195
  22. NH Tuan, TN Thach, LVC Hoan, NH Can, On a final value problem for a biparabolic equation with statistical discrete data, Applicable Analysis, 24 pp (2020). DOI: https://doi.org/10.1080/00036811.2020.1723554
  23. NH Can, Y Zhou, NH Tuan, TN Thach, Regularized solution approximation of a fractional pseudo-parabolic problem with a nonlinear source term and random data, Chaos, Solitons & Fractals, 136, 109847, 14 pp (2020). DOI: https://doi.org/10.1016/j.chaos.2020.109847
  24. NH Tuan, Y Zhou, LD Long, NH Can, Identifying inverse source for fractional diffusion equation with Riemann-Liouville derivative, Computational and Applied Mathematics, 39:2, 75, 16 pp (2020). DOI: https://doi.org/10.1007/s40314-020-1103-2
  25. NH Tuan, D Baleanu, TN Thach, D O'Regan, NH Can, Final value problem for nonlinear time fractional reaction-diffusion equation with discrete data, J. Comput. Appl. Math., 376, 112883, 25 pp (2020). DOI: https://doi.org/10.1016/j.cam.2020.112883
  26. NH Luc, D Kumar, LTD Hang, NH Can, On a final value problem for a nonhomogeneous fractional pseudo-parabolic equation, Alexandria Engineering Journal, 59:6, 4353-4364 (2020). DOI: https://doi.org/10.1016/j.aej.2020.07.041
  27. VV Au, NH Can, NH Tuan, TT Binh, Regularization of a backward problem for a Lotka-Volterra competition system, Computers & Mathematics with Applications, 78:3, 765-785 (2019). DOI: https://doi.org/10.1016/j.camwa.2019.02.037
  28. DHQ Nam, D O'Regan, VV Au, TB Thanh, NH Can, Regularization of an initial inverse problem for a biharmonic equation, Advances in Difference Equations, 255, 20 pp (2019). DOI: https://doi.org/10.1186/s13662-019-2191-4
  29. NH Tuan, Y Zhou, TN Thach, NH Can, Initial inverse problem for the nonlinear fractional Rayleigh-Stokes equation with random discrete data, Communications in Nonlinear Science and Numerical Simulation, 78, 104873, 18 pp (2019). DOI: https://doi.org/10.1016/j.cnsns.2019.104873
  30. TN Thach, NH Tuan, PTM Tam, MN Minh, NH Can, Identification of an inverse source problem for time‐fractional diffusion equation with random noise, Mathematical Methods in the Applied Sciences, 42:1, 204-218 (2019). DOI: https://doi.org/10.1002/mma.5334
  31. TT Binh, NH Luc, D O'Regan, NH Can, On an initial inverse problem for a diffusion equation with a conformable derivative, Advances in Difference Equations, 481, 24 pp (2019). DOI: https://doi.org/10.1186/s13662-019-2410-z
  32. NH Tuan, TN Thach, NH Can, D O'Regan, Regularization of a multidimensional diffusion equation with conformable time derivative and discrete data, Mathematical Methods in the Applied Sciences, 44:4, 2879-2891 (2019). DOI: https://doi.org/10.1002/mma.6133
  33. NH Tuan, VV Au, NH Can, Regularization of initial inverse problem for strongly damped wave equation, Applicable Analysis, 97:1, 69-88 (2018). DOI: https://doi.org/10.1080/00036811.2017.1359560
  34. NH Tuan, VV Au, NH Can, M Kirane, Final-value problem for a weakly-coupled system of structurally damped waves, Electronic Journal of Differential Equations, 149, 1-23 (2018). DOI: https://ejde.math.txstate.edu/Volumes/2018/149/tuan.pdf
  35. NH Can, NH Tuan, VV Au, LD Thang, Regularization of Cauchy abstract problem for a coupled system for nonlinear elliptic equations, Journal of Mathematical Analysis and Applications, 462:2, 1148-1177 (2018). DOI: https://doi.org/10.1016/j.jmaa.2018.01.066

 

 

KHOA TOÁN - THỐNG KÊ
Phòng C007 - Số 19 Nguyễn Hữu Thọ, Phường Tân Phong, Quận 7, TP. Hồ Chí Minh, Việt Nam
Phone: (84-028) 37755061