- Thong, D. V., & Van Hieu, D. (2019). Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems. Numerical Algorithms, 80(4), 1283-1307.
- Van Hieu, D. (2019). New inertial algorithm for a class of equilibrium problems. Numerical Algorithms, 80(4), 1413-1436.
- Khieu, T. T., & Vo, H. H. (2019). Recovering the historical distribution for nonlinear space-fractional diffusion equation with temporally dependent thermal conductivity in higher dimensional space. Journal of Computational and Applied Mathematics, 345, 114-126.
- Le Minh, T., Khieu, T. T., Khanh, T. Q., & Vo, H. H. (2019). On a space fractional backward diffusion problem and its approximation of local solution. Journal of Computational and Applied Mathematics, 346, 440-455.
- Anh, N. L. H. (2019). On sensitivity analysis of parametric set-valued equilibrium problems under the weak efficiency. Positivity, 23(1), 139-159.
- Thach, T. N., Huy, T. N., Tam, P. T. M., Minh, M. N., & Can, N. H. (2019). Identification of an inverse source problem for time‐fractional diffusion equation with random noise. Mathematical Methods in the Applied Sciences, 42(1), 204-218.
- Tuan, N. H., Nam, D. H. Q., & Vo, T. M. N. (2019). On a backward problem for the Kirchhoff’s model of parabolic type. Computers & Mathematics with Applications, 77(1), 15-33.
- Van Au, V., Kirane, M., & Tuan, N. H. (2019). Determination of initial data for a reaction-diffusion system with variable coefficients. Discrete & Continuous Dynamical Systems-A, 39(2), 771-801.
- Abro, K. A., Memon, A. A., Abro, S. H., Khan, I., & Tlili, I. (2019). Enhancement of heat transfer rate of solar energy via rotating Jeffrey nanofluids using Caputo–Fabrizio fractional operator: An application to solar energy. Energy Reports, 5, 41-49.
- Thong, D. V., & Gibali, A. (2019). Two strong convergence subgradient extragradient methods for solving variational inequalities in Hilbert spaces. Japan Journal of Industrial and Applied Mathematics, 36(1), 299-321.
- Thong, D. V., & Gibali, A. (2019). Extragradient methods for solving non-Lipschitzian pseudo-monotone variational inequalities. Journal of Fixed Point Theory and Applications, 21(1), 20.
- Tran, M. P. (2019). Good-λ type bounds of quasilinear elliptic equations for the singular case. Nonlinear Analysis, 178, 266-281.
- Van Au, V., Can, N. H., Tuan, N. H., & Binh, T. T. (2019). Regularization of a backward problem for a Lotka–Volterra competition system. Computers & Mathematics with Applications, 78(3), 765-785.
- Shen, Z., & Vo, H. H. (2019). Nonlocal dispersal equations in time-periodic media: Principal spectral theory, limiting properties and long-time dynamics. Journal of Differential Equations, 267(2), 1423-1466.
- Shah, Z., Dawar, A., Khan, I., Islam, S., Ching, D. L. C., & Khan, A. Z. (2019). Cattaneo-Christov model for electrical magnetite micropoler Casson ferrofluid over a stretching/shrinking sheet using effective thermal conductivity model. Case Studies in Thermal Engineering, 13, 100352.
- Ahmed, N., Saba, F., Khan, U., Khan, I., Alkanhal, T., Faisal, I., & Mohyud-Din, S. (2019). Spherical Shaped (A g− F e 3 O 4/H 2 O) Hybrid Nanofluid Flow Squeezed between Two Riga Plates with Nonlinear Thermal Radiation and Chemical Reaction Effects. Energies, 12(1), 76.
- Hussanan, A., Khan, I., Gorji, M. R., & Khan, W. A. (2019). CNT S-Water–Based Nanofluid Over a Stretching Sheet. BioNanoScience, 9(1), 21-29.
- Khan, I., Khan, W. A., Qasim, M., Afridi, I., & Alharbi, S. O. (2019). Thermodynamic Analysis of Entropy Generation Minimization in Thermally Dissipating Flow Over a Thin Needle Moving in a Parallel Free Stream of Two Newtonian Fluids. Entropy, 21(1), 74.
- Khan, N. S., Shah, Z., Islam, S., Khan, I., Alkanhal, T. A., & Tlili, I. (2019). Entropy generation in MHD mixed convection non-Newtonian second-grade nanoliquid thin film flow through a porous medium with chemical reaction and stratification. Entropy, 21(2), 139
- .Sheikholeslami, M., Shah, Z., Shafee, A., Khan, I., & Tlili, I. (2019). Uniform magnetic force impact on water based nanofluid thermal behavior in a porous enclosure with ellipse shaped obstacle. Scientific reports, 9(1), 1196.
- Saqib, M., Khan, I., & Shafie, S. (2019). Application of fractional differential equations to heat transfer in hybrid nanofluid: modeling and solution via integral transforms. Advances in Difference Equations, 2019(1), 52.
- Jawad, M., Shah, Z., Islam, S., Majdoubi, J., Tlili, I., Khan, W., & Khan, I. (2019). Impact of nonlinear thermal radiation and the viscous dissipation effect on the unsteady three-dimensional rotating flow of single-wall carbon nanotubes with aqueous suspensions. Symmetry, 11(2), 207
- .Anh, P. N., Hien, N. D., Phuong, N. X., & Vu The Ngocd. (2019). A parallel subgradient method extended to variational inequalities involving nonexpansive mappings. Applicable Analysis, 1-17.
- Tuan, N. H., Ngoc, T. B., Huynh, L. N., & Kirane, M. (2019). Existence and uniqueness of mild solution of time-fractional semilinear differential equations with a nonlocal final condition. Computers & Mathematics with Applications, 78(5), 1651-1668.
- Toan, P. T., & Kang, B. G. (2019). Krull dimension of a power series ring over a valuation domain. Journal of Algebra, 519, 62-86.
- Amzallag, E., Sun, M., Pogudin, G., & Vo, T. N. (2019). Complexity of triangular representations of algebraic sets. Journal of Algebra, 523, 342-364.
- Vo, T. N., & Toan, P. T. (2019). The power series Dedekind-Mertens number. Communications in Algebra, 1-9.
- Thong, D. V., & Vinh, N. T. (2019). Inertial methods for fixed point problems and zero point problems of the sum of two monotone mappings. Optimization, 68(5), 1037-1072.
- Vinh, N. T. (2019). A new projection algorithm for solving constrained equilibrium problems in Hilbert spaces. Optimization, 1-24.
- Nazarenko, S. V., Grebenev, V. N., Medvedev, S. B., & Galtier, S. (2019). The focusing problem for the Leith model of turbulence: a self-similar solution of the third kind. Journal of Physics A: Mathematical and Theoretical, 52(15), 155501.
- Triet, N. A., Phuong, N. D., Nguyen, V. T., & Nguyen-Huu, C. (2019). Regularization and Error Estimate for the Poisson Equation with Discrete Data. Mathematics, 7(5), 422.
- Imran, M. A., Aleem, M., Riaz, M. B., Ali, R., & Khan, I. (2019). A comprehensive report on convective flow of fractional (ABC) and (CF) MHD viscous fluid subject to generalized boundary conditions. Chaos, Solitons & Fractals, 118, 274-289.
- Sheikholeslami, M., Arabkoohsar, A., Khan, I., Shafee, A., & Li, Z. (2019). Impact of Lorentz forces on Fe3O4-water ferrofluid entropy and exergy treatment within a permeable semi annulus. Journal of Cleaner Production, 221, 885-898.
- Khan, I., Saqib, M., & Alqahtani, A. M. (2019). Channel flow of fractionalized H2O-based CNTs nanofluids with Newtonian heating. Discrete & Continuous Dynamical Systems-S, 176-183.
- Abro, K. A., & Khan, I. (2019). MHD flow of fractional Newtonian fluid embedded in a porous medium via Atangana-Baleanu fractional derivatives. Discrete & Continuous Dynamical Systems-S, 763-769.
- Tuan, N. H., Huynh, L. N., Ngoc, T. B., & Zhou, Y. (2019). On a backward problem for nonlinear fractional diffusion equations. Applied Mathematics Letters, 92, 76-84.
- Nguyen, H. L., Nguyen, H. T., Mokhtar, K., & Duong Dang, X. T. (2019). Identifying initial condition of the Rayleigh‐Stokes problem with random noise. Mathematical Methods in the Applied Sciences, 42(5), 1561-1571.
- Nguyen, H. L., Nguyen, H. T., & Zhou, Y. (2019). Regularity of the solution for a final value problem for the Rayleigh‐Stokes equation. Mathematical Methods in the Applied Sciences.
- Tuan, N. H., Hoan, L. V. C., & Tatar, S. (2019). An inverse problem for an inhomogeneous time-fractional diffusion equation: a regularization method and error estimate. Computational and Applied Mathematics, 38(2), 32.
- Luc, N. H., Huynh, L. N., & Tuan, N. H. (2019). On a backward problem for inhomogeneous time-fractional diffusion equations. Computers & Mathematics with Applications.
- Tuan, N. H., Huynh, L. N., & Zhou, Y. (2019). Regularization of a backward problem for 2-D time-fractional diffusion equations with discrete random noise. Applicable Analysis, 1-26.
- Thong, D. V., & Cholamjiak, P. (2019). Strong convergence of a forward–backward splitting method with a new step size for solving monotone inclusions. Computational and Applied Mathematics, 38(2), 94.
- Gibali, A., Thong, D. V., & Tuan, P. A. (2019). Two simple projection-type methods for solving variational inequalities. Analysis and Mathematical Physics, 1-23.
- Thong, D. V., Dung, V. T., & Tuan, P. A. (2019). HYBRID MANN METHODS FOR THE SPLIT VARIATIONAL INCLUSION PROBLEMS AND FIXED POINT PROBLEMS. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 20(4), 625-645.
- Thong, D. V., & Vuong, P. T. (2019). Modified Tseng's extragradient methods for solving pseudo-monotone variational inequalities. Optimization, 1-20.
- Thong, D. V., Triet, N. A., Li, X. H., & Dong, Q. L. (2019). Strong convergence of extragradient methods for solving bilevel pseudo-monotone variational inequality problems. Numerical Algorithms, 1-21.
- Dao, N. A., Hanh, N. T. N., Hieu, T. M., & Nguyen, H. B. (2019). Interpolation inequalities between lorentz space and BMO: the endpoint case (L-1, L-infinity, BMO).
- Tran, P. T. (2019). On the convergence proof of AMSGrad and a new version. IEEE Access, 7, 61706-61716.
- Phuong, T. T. (2019). Privacy-Preserving Deep Learning via Weight Transmission. IEEE Transactions on Information Forensics and Security.
- Tuan, N. H., Zhou, Y., Thach, T. N., & Can, N. H. (2019). Initial inverse problem for the nonlinear fractional Rayleigh-Stokes equation with random discrete data. Communications in Nonlinear Science and Numerical Simulation, 104873.
- Danh, H. Q. N., O’Regan, D., Tran, B. T., & Nguyen, C. H. (2019). Regularization of an initial inverse problem for a biharmonic equation. Advances in Difference Equations, 2019(1), 255.
- Van Au, V., Phuong, N. D., Tuan, N. H., & Zhou, Y. (2019). Some regularization methods for a class of nonlinear fractional evolution equations. Computers & Mathematics with Applications.
- Huynh, L. N., Zhou, Y., O'Regan, D., & Tuan, N. H. (2019). Fractional Landweber method for an initial inverse problem for time-fractional wave equations. Applicable Analysis, 1-19.
- Ngoc, T. B., Tuan, N. H., & O’Regan, D. (2019). Existence and uniqueness of mild solutions for a final value problem for nonlinear fractional diffusion systems. Communications in Nonlinear Science and Numerical Simulation, 104882.
- Tuan, N. H., Lesnic, D., & Van, P. T. K. (2019). Identification of the initial population of a nonlinear predator-prey system backwards in time. Journal of Mathematical Analysis and Applications.
- Tran, M. P., & Nguyen, T. N. (2019). Existence of a renormalized solution to the quasilinear Riccati-type equation in Lorentz spaces. Comptes Rendus Mathematique, 357(1), 59-65.
- Phuong, C. X. (2019). Density deconvolution from grouped data with additive errors. Statistics & Probability Letters, 148, 74-81.
- Van Hieu, D., Anh, P. K., & Muu, L. D. (2019). Modified extragradient-like algorithms with new stepsizes for variational inequalities. Computational Optimization and Applications, 73(3), 913-932.
- Duong Viet, T., Vinh, N. T., & Van Hieu, D. (2019). Accelerated hybrid and shrinking projection methods for variational inequality problems. Optimization, 68(5), 981-998.
- Van Hieu, D., & Quy, P. K. (2019). Explicit iterative algorithms for solving equilibrium problems. Calcolo, 56(2), 11.
- Van Hieu, D. (2019). Strong convergence of a new hybrid algorithm for fixed point problems and equilibrium problems. Mathematical Modelling and Analysis, 24(1), 1-19.
- Thong, D. V., & Van Hieu, D. (2019). Strong convergence of extragradient methods with a new step size for solving variational inequality problems. Computational and Applied Mathematics, 38(3), 136.
- Van Hieu, D. (2019). Projection methods for solving split equilibrium problems. arXiv preprint arXiv:1904.07600.
- Van Hieu, D., Muu, L. D., & Quy, P. K. (2019). Explicit Extragradient-Like Method with Regularization for Variational Inequalities. Results in Mathematics, 74(4), 137.
- Van Hieu, D., Cho, Y. J., & Xiao, Y. B. (2019). Golden ratio algorithms with new stepsize rules for variational inequalities. arXiv preprint arXiv:1904.07591.
- Toan, P. T., Vo, T. N., & Razzaghi, M. (2019). Taylor wavelet method for fractional delay differential equations. Engineering with Computers, 1-10.
- Chu, K. D., Hai, D. D., & Shivaji, R. (2019). Uniqueness of positive radial solutions for infinite semipositone p-Laplacian problems in exterior domains. Journal of Mathematical Analysis and Applications, 472(1), 510-525.
- Van Hieu, D., Son, D. X., Anh, P. K., & Muu, L. D. (2019). A Two-Step Extragradient-Viscosity Method for Variational Inequalities and Fixed Point Problems. Acta Mathematica Vietnamica, 44(2), 531-552.
- Vovan, T., Tranphuoc, L., & Chengoc, H. (2019). Classifying two populations by bayesian method and applications. Communications in Mathematics and Statistics, 7(2), 141-161. (ISI). (DOI: https://doi.org/10.1007/s40304-018-0139-8)
- Che-Ngoc, H., Nguyen-Trang, T., Nguyen-Bao, T., Nguyen-Thoi, T., & Vo-Van, T. (2020). A new approach for face detection using the maximum function of probability density functions. Annals of Operations Research, 1-21. (ISI). (DOI: https://doi.org/10.1007/S10479-020-03823-1)
- Nguyen-Thi, K. N., Che-Ngoc, H., & Pham-Chau, A. T. (2020). An Efficient Image Contrast Enhancement Method using Sigmoid Function and Differential Evolution. Journal of Advanced Engineering and Computation, 4(3), 162-172. (DOI: https://doi.org/10.25073/JAEC.202043.267).
- Tran, N. T., Dao, T. P., Nguyen-Trang, T., & Ha, C. N. (2021). Prediction of Fatigue Life for a New 2-DOF Compliant Mechanism by Clustering-Based ANFIS Approach. Mathematical Problems in Engineering, 2021. (ISI). (DOI: https://doi.org/10.1155/2021/6672811).
-
T. N. Vo & P. T. Toan (2019). The power series Dedekind-Mertens number, Communications in Algebra, 47, 3481-3489.
-
E. Amzallag, G. Pogudin, M. Sun & T. N. Vo (2019). Complexity of Triangular Representations of Algebraic Sets, Journal of Algebra, 523, 342-364.