1. Thong, D. V., & Van Hieu, D. (2019). Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problemsNumerical Algorithms80(4), 1283-1307.
  2. Van Hieu, D. (2019). New inertial algorithm for a class of equilibrium problemsNumerical Algorithms80(4), 1413-1436.
  3. Khieu, T. T., & Vo, H. H. (2019). Recovering the historical distribution for nonlinear space-fractional diffusion equation with temporally dependent thermal conductivity in higher dimensional spaceJournal of Computational and Applied Mathematics345, 114-126.
  4. Le Minh, T., Khieu, T. T., Khanh, T. Q., & Vo, H. H. (2019). On a space fractional backward diffusion problem and its approximation of local solutionJournal of Computational and Applied Mathematics346, 440-455.
  5. Anh, N. L. H. (2019). On sensitivity analysis of parametric set-valued equilibrium problems under the weak efficiencyPositivity23(1), 139-159.
  6. Thach, T. N., Huy, T. N., Tam, P. T. M., Minh, M. N., & Can, N. H. (2019). Identification of an inverse source problem for time‐fractional diffusion equation with random noiseMathematical Methods in the Applied Sciences42(1), 204-218.
  7. Tuan, N. H., Nam, D. H. Q., & Vo, T. M. N. (2019). On a backward problem for the Kirchhoff’s model of parabolic typeComputers & Mathematics with Applications77(1), 15-33.
  8. Van Au, V., Kirane, M., & Tuan, N. H. (2019). Determination of initial data for a reaction-diffusion system with variable coefficientsDiscrete & Continuous Dynamical Systems-A39(2), 771-801.
  9. Abro, K. A., Memon, A. A., Abro, S. H., Khan, I., & Tlili, I. (2019). Enhancement of heat transfer rate of solar energy via rotating Jeffrey nanofluids using Caputo–Fabrizio fractional operator: An application to solar energyEnergy Reports5, 41-49.
  10. Thong, D. V., & Gibali, A. (2019). Two strong convergence subgradient extragradient methods for solving variational inequalities in Hilbert spacesJapan Journal of Industrial and Applied Mathematics36(1), 299-321.
  11. Thong, D. V., & Gibali, A. (2019). Extragradient methods for solving non-Lipschitzian pseudo-monotone variational inequalitiesJournal of Fixed Point Theory and Applications21(1), 20.
  12. Tran, M. P. (2019). Good-λ type bounds of quasilinear elliptic equations for the singular caseNonlinear Analysis178, 266-281.
  13. Van Au, V., Can, N. H., Tuan, N. H., & Binh, T. T. (2019). Regularization of a backward problem for a Lotka–Volterra competition systemComputers & Mathematics with Applications78(3), 765-785.
  14. Shen, Z., & Vo, H. H. (2019). Nonlocal dispersal equations in time-periodic media: Principal spectral theory, limiting properties and long-time dynamicsJournal of Differential Equations267(2), 1423-1466.
  15. Shah, Z., Dawar, A., Khan, I., Islam, S., Ching, D. L. C., & Khan, A. Z. (2019). Cattaneo-Christov model for electrical magnetite micropoler Casson ferrofluid over a stretching/shrinking sheet using effective thermal conductivity modelCase Studies in Thermal Engineering13, 100352.
  16. Ahmed, N., Saba, F., Khan, U., Khan, I., Alkanhal, T., Faisal, I., & Mohyud-Din, S. (2019). Spherical Shaped (A g− F e 3 O 4/H 2 O) Hybrid Nanofluid Flow Squeezed between Two Riga Plates with Nonlinear Thermal Radiation and Chemical Reaction EffectsEnergies12(1), 76.
  17. Hussanan, A., Khan, I., Gorji, M. R., & Khan, W. A. (2019). CNT S-Water–Based Nanofluid Over a Stretching SheetBioNanoScience9(1), 21-29.
  18. Khan, I., Khan, W. A., Qasim, M., Afridi, I., & Alharbi, S. O. (2019). Thermodynamic Analysis of Entropy Generation Minimization in Thermally Dissipating Flow Over a Thin Needle Moving in a Parallel Free Stream of Two Newtonian FluidsEntropy21(1), 74.
  19. Khan, N. S., Shah, Z., Islam, S., Khan, I., Alkanhal, T. A., & Tlili, I. (2019). Entropy generation in MHD mixed convection non-Newtonian second-grade nanoliquid thin film flow through a porous medium with chemical reaction and stratificationEntropy21(2), 139
  20. .Sheikholeslami, M., Shah, Z., Shafee, A., Khan, I., & Tlili, I. (2019). Uniform magnetic force impact on water based nanofluid thermal behavior in a porous enclosure with ellipse shaped obstacleScientific reports9(1), 1196.
  21. Saqib, M., Khan, I., & Shafie, S. (2019). Application of fractional differential equations to heat transfer in hybrid nanofluid: modeling and solution via integral transformsAdvances in Difference Equations2019(1), 52.
  22. Jawad, M., Shah, Z., Islam, S., Majdoubi, J., Tlili, I., Khan, W., & Khan, I. (2019). Impact of nonlinear thermal radiation and the viscous dissipation effect on the unsteady three-dimensional rotating flow of single-wall carbon nanotubes with aqueous suspensionsSymmetry11(2), 207
  23. .Anh, P. N., Hien, N. D., Phuong, N. X., & Vu The Ngocd. (2019). A parallel subgradient method extended to variational inequalities involving nonexpansive mappingsApplicable Analysis, 1-17.
  24. Tuan, N. H., Ngoc, T. B., Huynh, L. N., & Kirane, M. (2019). Existence and uniqueness of mild solution of time-fractional semilinear differential equations with a nonlocal final conditionComputers & Mathematics with Applications78(5), 1651-1668.
  25. Toan, P. T., & Kang, B. G. (2019). Krull dimension of a power series ring over a valuation domainJournal of Algebra519, 62-86.
  26. Amzallag, E., Sun, M., Pogudin, G., & Vo, T. N. (2019). Complexity of triangular representations of algebraic setsJournal of Algebra523, 342-364.
  27. Vo, T. N., & Toan, P. T. (2019). The power series Dedekind-Mertens numberCommunications in Algebra, 1-9.
  28. Thong, D. V., & Vinh, N. T. (2019). Inertial methods for fixed point problems and zero point problems of the sum of two monotone mappingsOptimization68(5), 1037-1072.
  29. Vinh, N. T. (2019). A new projection algorithm for solving constrained equilibrium problems in Hilbert spacesOptimization, 1-24.
  30. Nazarenko, S. V., Grebenev, V. N., Medvedev, S. B., & Galtier, S. (2019). The focusing problem for the Leith model of turbulence: a self-similar solution of the third kindJournal of Physics A: Mathematical and Theoretical52(15), 155501.
  31. Triet, N. A., Phuong, N. D., Nguyen, V. T., & Nguyen-Huu, C. (2019). Regularization and Error Estimate for the Poisson Equation with Discrete DataMathematics7(5), 422.
  32. Imran, M. A., Aleem, M., Riaz, M. B., Ali, R., & Khan, I. (2019). A comprehensive report on convective flow of fractional (ABC) and (CF) MHD viscous fluid subject to generalized boundary conditionsChaos, Solitons & Fractals118, 274-289.
  33. Sheikholeslami, M., Arabkoohsar, A., Khan, I., Shafee, A., & Li, Z. (2019). Impact of Lorentz forces on Fe3O4-water ferrofluid entropy and exergy treatment within a permeable semi annulusJournal of Cleaner Production221, 885-898.
  34. Khan, I., Saqib, M., & Alqahtani, A. M. (2019). Channel flow of fractionalized H2O-based CNTs nanofluids with Newtonian heatingDiscrete & Continuous Dynamical Systems-S, 176-183.
  35. Abro, K. A., & Khan, I. (2019). MHD flow of fractional Newtonian fluid embedded in a porous medium via Atangana-Baleanu fractional derivativesDiscrete & Continuous Dynamical Systems-S, 763-769.
  36. Tuan, N. H., Huynh, L. N., Ngoc, T. B., & Zhou, Y. (2019). On a backward problem for nonlinear fractional diffusion equationsApplied Mathematics Letters92, 76-84.
  37. Nguyen, H. L., Nguyen, H. T., Mokhtar, K., & Duong Dang, X. T. (2019). Identifying initial condition of the Rayleigh‐Stokes problem with random noiseMathematical Methods in the Applied Sciences42(5), 1561-1571.
  38. Nguyen, H. L., Nguyen, H. T., & Zhou, Y. (2019). Regularity of the solution for a final value problem for the Rayleigh‐Stokes equationMathematical Methods in the Applied Sciences.
  39. Tuan, N. H., Hoan, L. V. C., & Tatar, S. (2019). An inverse problem for an inhomogeneous time-fractional diffusion equation: a regularization method and error estimateComputational and Applied Mathematics38(2), 32.
  40. Luc, N. H., Huynh, L. N., & Tuan, N. H. (2019). On a backward problem for inhomogeneous time-fractional diffusion equationsComputers & Mathematics with Applications.
  41. Tuan, N. H., Huynh, L. N., & Zhou, Y. (2019). Regularization of a backward problem for 2-D time-fractional diffusion equations with discrete random noiseApplicable Analysis, 1-26.
  42. Thong, D. V., & Cholamjiak, P. (2019). Strong convergence of a forward–backward splitting method with a new step size for solving monotone inclusionsComputational and Applied Mathematics38(2), 94.
  43. Gibali, A., Thong, D. V., & Tuan, P. A. (2019). Two simple projection-type methods for solving variational inequalitiesAnalysis and Mathematical Physics, 1-23.
  44. Thong, D. V., Dung, V. T., & Tuan, P. A. (2019). HYBRID MANN METHODS FOR THE SPLIT VARIATIONAL INCLUSION PROBLEMS AND FIXED POINT PROBLEMSJOURNAL OF NONLINEAR AND CONVEX ANALYSIS20(4), 625-645.
  45. Thong, D. V., & Vuong, P. T. (2019). Modified Tseng's extragradient methods for solving pseudo-monotone variational inequalitiesOptimization, 1-20.
  46. Thong, D. V., Triet, N. A., Li, X. H., & Dong, Q. L. (2019). Strong convergence of extragradient methods for solving bilevel pseudo-monotone variational inequality problemsNumerical Algorithms, 1-21.
  47. Dao, N. A., Hanh, N. T. N., Hieu, T. M., & Nguyen, H. B. (2019). Interpolation inequalities between lorentz space and BMO: the endpoint case (L-1, L-infinity, BMO).
  48. Tran, P. T. (2019). On the convergence proof of AMSGrad and a new versionIEEE Access7, 61706-61716.
  49. Phuong, T. T. (2019). Privacy-Preserving Deep Learning via Weight TransmissionIEEE Transactions on Information Forensics and Security.
  50. Tuan, N. H., Zhou, Y., Thach, T. N., & Can, N. H. (2019). Initial inverse problem for the nonlinear fractional Rayleigh-Stokes equation with random discrete dataCommunications in Nonlinear Science and Numerical Simulation, 104873.
  51. Danh, H. Q. N., O’Regan, D., Tran, B. T., & Nguyen, C. H. (2019). Regularization of an initial inverse problem for a biharmonic equationAdvances in Difference Equations2019(1), 255.
  52. Van Au, V., Phuong, N. D., Tuan, N. H., & Zhou, Y. (2019). Some regularization methods for a class of nonlinear fractional evolution equationsComputers & Mathematics with Applications.
  53. Huynh, L. N., Zhou, Y., O'Regan, D., & Tuan, N. H. (2019). Fractional Landweber method for an initial inverse problem for time-fractional wave equationsApplicable Analysis, 1-19.
  54. Ngoc, T. B., Tuan, N. H., & O’Regan, D. (2019). Existence and uniqueness of mild solutions for a final value problem for nonlinear fractional diffusion systemsCommunications in Nonlinear Science and Numerical Simulation, 104882.
  55. Tuan, N. H., Lesnic, D., & Van, P. T. K. (2019). Identification of the initial population of a nonlinear predator-prey system backwards in timeJournal of Mathematical Analysis and Applications.
  56. Tran, M. P., & Nguyen, T. N. (2019). Existence of a renormalized solution to the quasilinear Riccati-type equation in Lorentz spacesComptes Rendus Mathematique357(1), 59-65.
  57. Phuong, C. X. (2019). Density deconvolution from grouped data with additive errorsStatistics & Probability Letters148, 74-81.
  58. Van Hieu, D., Anh, P. K., & Muu, L. D. (2019). Modified extragradient-like algorithms with new stepsizes for variational inequalitiesComputational Optimization and Applications73(3), 913-932.
  59. Duong Viet, T., Vinh, N. T., & Van Hieu, D. (2019). Accelerated hybrid and shrinking projection methods for variational inequality problemsOptimization68(5), 981-998.
  60. Van Hieu, D., & Quy, P. K. (2019). Explicit iterative algorithms for solving equilibrium problemsCalcolo56(2), 11.
  61. Van Hieu, D. (2019). Strong convergence of a new hybrid algorithm for fixed point problems and equilibrium problemsMathematical Modelling and Analysis24(1), 1-19.
  62. Thong, D. V., & Van Hieu, D. (2019). Strong convergence of extragradient methods with a new step size for solving variational inequality problemsComputational and Applied Mathematics38(3), 136.
  63. Van Hieu, D. (2019). Projection methods for solving split equilibrium problemsarXiv preprint arXiv:1904.07600.
  64. Van Hieu, D., Muu, L. D., & Quy, P. K. (2019). Explicit Extragradient-Like Method with Regularization for Variational InequalitiesResults in Mathematics74(4), 137.
  65. Van Hieu, D., Cho, Y. J., & Xiao, Y. B. (2019). Golden ratio algorithms with new stepsize rules for variational inequalitiesarXiv preprint arXiv:1904.07591.
  66. Toan, P. T., Vo, T. N., & Razzaghi, M. (2019). Taylor wavelet method for fractional delay differential equationsEngineering with Computers, 1-10.
  67. Chu, K. D., Hai, D. D., & Shivaji, R. (2019). Uniqueness of positive radial solutions for infinite semipositone p-Laplacian problems in exterior domainsJournal of Mathematical Analysis and Applications472(1), 510-525.
  68. Van Hieu, D., Son, D. X., Anh, P. K., & Muu, L. D. (2019). A Two-Step Extragradient-Viscosity Method for Variational Inequalities and Fixed Point ProblemsActa Mathematica Vietnamica44(2), 531-552.

 

 

 

 

 

 

Khoa toán-Thống kê
Phòng C004 - Số 19 Nguyễn Hữu Thọ, Phường Tân Phong, Quận 7, TP. Hồ Chí Minh, Việt Nam.
Phone: (84-028) 37755061